Second-strand cDNA synthesis with E. coli DNA polymerase I and RNase H: the fate of information at the mRNA 5' terminus and the effect of E. coli DNA ligase.
نویسندگان
چکیده
A simple method for generating cDNA libraries has been described (1) in which RNase H-DNA polymerase I-mediated second-strand cDNA synthesis primes from an RNA oligonucleotide derived from the 5' (capped) end of mRNA. The size of this oligonucleotide and the fate of the information corresponding to the RNA during subsequent cloning have not been established. We show here that the 5'-most RNA primer varies in length from 8 to 21 nucleotides, and that information corresponding to the length of the RNA primer is normally lost during cloning. A modification of the second-strand cDNA synthesis procedure is described which allows cloning of all, or almost all, of the primer sequence information. In addition, we show that the presence of E. coli DNA ligase during second-strand cDNA synthesis can increase the length of the cDNA clones obtained from long RNAs. Cloning by addition of linkers provides the greatest chance of obtaining near full-length cDNA clones from long mRNAs.
منابع مشابه
Cloning and Expression of Human Gamma-Interferon cDNA in E. coli
Prior to the production of human gamma interferon using recombinant DNA technology, it had been producedmainly upon mitogenic induction of lymphocytes in very low amounts, which evidently hamperedits characterization and its medical applications. The recombinant gamma interferons produced in largerquantities in prokaryotic systems retain their biological activities, and can be...
متن کاملStrand displacement during deoxyribonucleic acid synthesis at single strand breaks.
Synthesis of DNA by DNA polymerases has been studied by using circular duplex DNA templates which contain single phosphodiester bond interruptions (nicks). Escherichia coli DNA polymerase can initiate synthesis at nicks by the covalent attachment of nucleotides to the 3’ end of the primer strand. An initial phase of synthesis is accompanied by the removal of nucleotides from the 5’ end of the n...
متن کاملStructure of nascent replicative form DNA of coliphage M13.
Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' leads to 3' exonuclease associated uith DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H,...
متن کاملEffects of DNA3′pp5′G capping on 3′ end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance
When DNA breakage results in a 3'-PO4 terminus, the end is considered 'dirty' because it cannot prime repair synthesis by DNA polymerases or sealing by classic DNA ligases. The noncanonical ligase RtcB can guanylylate the DNA 3'-PO4 to form a DNA3'pp5'GOH cap. Here we show that DNA capping precludes end joining by classic ATP-dependent and NAD(+)-dependent DNA ligases, prevents template-indepen...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 16 5 شماره
صفحات -
تاریخ انتشار 1988